
PHYSICAL REVIEW E 66, 051304 ~2002!
Driven low density granular mixtures
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We study the steady state properties of a two-dimensional granular mixture in the presence of energy driving
by employing simple analytical estimates and direct simulation Monte Carlo. We adopt two different driving
mechanisms,~a! a homogeneous heat bath with friction and~b! a vibrating boundary~thermal or harmonic! in
the presence of gravity. The main findings are the appearance of two different granular temperatures, one for
each species; the existence of overpopulated tails in the velocity distribution functions and of nontrivial spatial
correlations indicating the spontaneous formation of cluster aggregates. In the case of a fluid subject to gravity
and to a vibrating boundary, both densities and temperatures display nonuniform profiles along the direction
normal to the wall, in particular, the temperature profiles are different for the two species while the temperature
ratio is almost constant with the height. Finally, we obtained the velocity distributions at different heights and
verified the non-Gaussianity of the resulting distributions.
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I. INTRODUCTION

Granular materials present a rich and intriguing pheno
enology, which has attracted the interest of the scien
community since the nineteenth century@1#. However, in
spite of its recent progress the theoretical study of gran
gases, i.e., of fluidized granular particles, is certainly l
advanced than that concerning ordinary molecular fluids.
reason for this state of affairs is the presence of dissipa
due to inelastic collisions and of friction with the surroun
ings, which prevents these system to reach thermodyna
equilibrium. In fact, in order to render stationary a granu
system, one needs to inject energy continuously into the
tem. This can be done, for instance, by shaking or vibrat
the grains.

In the present paper we illustrate the results of a num
cal investigation concerning the properties of a tw
component granular mixture, modeled, following an est
lished tradition, by inelastic hard spheres~IHS! with
different masses, restitution coefficients, radii, and subjec
different forms of external drive. The physical motivation f
our study stems from the fact that in nature most granu
materials are polydisperse from the point of view of th
sizes and/or of their physical and mechanical properties.
theoretical study of granular mixtures has attracted so far
attention of several researchers@2–5#. These studies compre
hend both freely cooling and uniformly heated granular m
tures, and have been performed almost contemporaneo
with laboratory experiments@6,7#. The most striking out-
come is the lack of energy equipartition, i.e., the presenc
two different kinetic temperatures, one for each species.

The salient features of the present work are the followi
~1! A finite-temperature uniform heat bath to drive th

system was utilized. This is achieved by means of a fin
friction between the particles and the surroundings.

~2! We also considered a situation in which the partic
subject to a vertical gravitational field receive energy ani
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tropically from the bottom vibrating wall of the container.
~3! In both cases we provide information about the pr

ence of inhomogeneities in the system, e.g., density clus
ing and nonuniform density and temperature profiles.

In Sec. II we present the model fluid and two differe
mechanisms of energy supply. In Sec. III we discuss the
submodel, the one with the heat bath, and obtain by mean
an approximate analytic method an estimate of the pa
temperature of each component. Subsequently we study
same submodel with a direct simulation Monte Ca
~DSMC! algorithm. In Sec. IV we study numerically the se
ond submodel~the one with gravity and vibrating wall! by
means of the DSMC@8,9#. Finally, in Secs. V and VI, we
discuss the results and present our conclusions.

II. DEFINITION OF THE MODELS

We shall consider a dilute inelastic gas constituted ofN1
particles of massm1 andN2 particles of massm2 subject to
some kind of external driving~this will be specified in the
following!. We suppose that the interactions between
grains can be described by the smooth IHS model@10#, thus
we specify only the radius of the spheres, their masses
the fraction of the kinetic energy dissipated at each collisi
This can be done by defining three different restitution co
ficientsa i j , i.e.,a11, a22, anda125a21, which account for
normal dissipation in collisions among particles of typei
and j. No internal degrees of freedom~e.g., rotations! are
included.

One can describe the velocity changes induced by
instantaneous inelastic collisions of smooth disks labele
and 2 of diameterss1 ands2 by the following equations:

v185v12
11ak1k2

2

mk2

mk1
1mk2

@~v12v2!•n̂#n̂, ~1a!
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v285v21
11ak1k2

2

mk1

mk1
1mk2

@~v12v2!•n̂#n̂, ~1b!

wheren̂52(x12x2)/(sk1
1sk2

) is the unit vector along the

line of centersx1 andx2 of the colliding disks at contact an
k1 ,k2 are the species~1 or 2! to which particles 1 and 2
belong. An elementary collision conserves the total mom
tum and reduces the relative kinetic energy by an amo
proportional to (12ak1k2

2 )/4. The collision rule we have

adopted excludes the presence of tangential forces,
hence the rotational degrees of freedom do not contribut
the description of the dynamics.

Since the particles suffer mutual collisions and loose
netic energy, in order to achieve a steady state, one nee
supply some energy from the exterior. The energy source
been modeled in two different fashions. In the first submo
we have assumed that the particles experience a uniform
chastic force and a viscous damping@11,12#. The presence o
the velocity-dependent term, in addition to the random fo
ing, not only is motivated by the idea of preventing the e
ergy of a driven elastic system (ak1k2

→1), to increase in-
definitely, but also mimics the presence of friction of t
particles with the container. A fluctuation dissipation relati
is assumed between the viscous force and the intensity o
noise. Even in extended systems with small inelasticity,
absence of friction may cause some problems of stab
@15#.

In the second submodel the grains are constrained
move on a frictionless inclined plane and the bottom bou
ary vibrates~as a thermal@13# or deterministic@14# oscillat-
ing wall!. Periodic boundary conditions are assumed la
ally.

Since we consider throughout only sufficiently low de
sity systems, successive binary collisions are effectively
correlated and Boltzmann equation can be used to desc
the nonequilibrium dynamics.

III. UNIFORMLY HEATED SYSTEM

In order to see the effect of the heat bath, let us cons
the system in the absence of collisions. In this case, the
lution of the velocity of each particle is described by
Ornstein-Uhlenbeck process. If we require that the two co
ponents must reach the same granular temperature in
limit of vanishing inelasticity, we have two different poss
bilities to fix the heat-bath parameters:

] txi~ t !5vi~ t !, ~2!

mi] tvi~ t !52gvi~ t !1A2gTbj i~ t !, ~3a!

mi] tvi~ t !52mihvi~ t !1A2mihTbj i~ t !, ~3b!

wherei 51,2; Tb is the heat bath temperature; andj(t) is a
Gaussian noise with the following properties:

^j i~ t !&50, ~4a!
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^j i~ t1!j j~ t2!&5d~ t12t2!d i j . ~4b!

The associated Fokker-Planck equations for the two ca
are, respectively,

] t f i~r ,v,t !5
g

mi
“v„vf i~r ,v,t !…

1
gTb

mi
2

¹v
2f i~r ,v,t !v“ r f i~r ,v,t !, ~5a!

] t f i~r ,v,t !5h“v„vf i~r ,v,t !…1
hTb

mi
¹v

2f i~r ,v,t !

1v“ r f i~r ,v,t !. ~5b!

A. Spatially uniform solutions

When we take into account collisions among particl
Eqs.~5! become two coupled Boltzmann equations modifi
by the presence of a diffusion term due to the thermal no
In order to derive the temperature of each species in
homogeneous stationary state, we shall first neglect the
tial dependence of the distribution functionsf i . This can be
regarded as a mean field approximation to the Boltzm
equation. In other words, we let collisions to occur regardl
their spatial separation. Although the method of derivation
the equations for the partial temperatures is not original,
present it in order to render the paper self-contained
because it shows the differences between the particular
bath we employed and those chosen by other authors@4#.
First, indicating byni5Ni /V the partial density of speciesi,
we notice that both Eqs.~5! possess the same equilibriu
solution:

f i~v!5ni S mi

2pTb
D d/2

e2miv
2/2Tb, ~6!

but their relaxation properties are different. Only upon ad
ing the inelastic collision term, the two species display d
ferent temperatures. The resulting Boltzmann equation fo
granular mixture@2–4# is

] t f i~v1 ;t !5(
j

Ji j @v1u f i , f j #1
j0i

2

2
¹v

2f i1h i“v•~v1f i !,

~7!

where we have used a compact notation to represent the
different choices of heat bath:

In case 1,

j0i
2 → 2gTb

mi
2

,

h i→
g

mi
; ~8!

in case 2,
4-2
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j0i
2 → 2hTb

mi
,

h i→h; ~9!

andJi j @v1u f i , f j # is the collision integral,

Ji j @v1u f i , f j #[s i j
2 E dv2E dŝQ~ŝ•g12!~ ŝ•g12!

3@a i j
22f i~v18! f j~v28!2 f i~v1! f j~v2!#. ~10!

The primed velocities are precollisional states, which can
obtained by inverting Eqs.~1!.

Due to the presence of the heat-bath terms, the sys
reaches asymptotically a steady state, characterized by t
independent pair distribution functions~pdf’s!. By requiring
stationarity and integrating overv1 the equation forv i

2f i , we
obtain

(
j
E dv1v1

2Ji j @v1u f i , f j #1
j0i

2

2 E dv1v1
2¹v

2f i

1h iE dv1v1
2
“v•~v1f i !50. ~11!

After simplifying the second and the third integral by int
gration by parts and using the normalization prope
* f idv i5ni , we find

(
j
E dv1v1

2Ji j @v1u f i , f j #1nidj0i
2 22h iE dv1v1

2f i~v1!50.

~12!

The partial temperature is defined as

niTi[
1

dE dv1miv1
2f i , ~13!

so that Eq.~12! can be recast as

Ti5
mi

2dh i
S 1

ni
(

j
E dv1v1

2Ji j @v1u f i , f j #1dj0i
2 D . ~14!

Equation~14! determines the partial temperatures once thf i
are known. In practice, one can obtain an estimate ofTi by
substituting two Maxwell distributions:

f i~v !5ni S mi

2pTi
D d/2

e2miv1
2/2Ti.

After performing the remaining integrals~see Refs.@2,4#!,
one gets
05130
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dG~d/2!

mip
(d21)/2

2h i~Tb2Ti !

5s i i
d21ni

2~12a i i
2 !

mi
3/2

Ti
3/2

1s i j
d21njm j i Fm j i ~12a i j

2 !S 2Ti

mi
1

2Tj

mj
D

14~11a i j !
Ti2Tj

m11m2
G S 2Ti

mi
1

2Tj

mj
D 1/2

, ~15!

wherem i j 5mi /(mi1mj ). One obtains the steady values
the partial temperatures in the spatially homogeneous si
tion, by solving numerically the nonlinear system of Eq
~15!.

B. Comparison between the two heat baths

In Figs. 1 and 2, we report on the temperature ratioT1 /T2
as a function of a common restitution coefficienta, having

FIG. 1. Homogeneous driving. Granular temperature ra
T1 /T2 vs a, obtained with the heat bath of case 1 usingTb51,
g50.1, and different mass ratios.

FIG. 2. Homogeneous driving of case 2. Granular tempera
ratio T1 /T2 vs a, with Tb51, h50.1, and various mass ratios.
4-3
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chosen equal coefficientsa115a225a125a. Assuming
identical concentrations and varying the mass ratiom1 /m2,
we considered cases 1 and 2.

In the first case, the species with the largest mas
‘‘colder.’’ In fact, both components receive the same ene
from the heat bath, but the heavier species dissipates m
energy due to collisions.

We notice that, on the contrary in case 2, the tempera
ratio is, on the contrary, an increasing function of the m
ratio m1 /m2. The experimental observation@6# suggest that
the trend of case 2 is physically more relevant. In case
both the friction term and the power supplied are prop
tional to the mass of the two species. In the following DSM
simulations we shall use case 2.

C. DSMC of homogeneously driven systems

In the present section we illustrate the results obtai
simulating the system with the heat bath@with recipe 2, i.e.,
Eq. ~3b!# by the so-called direct simulation Monte Carl
according to the implementation described in Ref.@16#. In
this way we do not constrain the system to be spatially
mogeneous since DSMC allows for fluctuations of the r
evant fields.

At every time step of lengthDt, each particle is selecte
to collide with a probabilitypc5Dt/tc ~where tc is an a
priori fixed mean free time established consistently with
mean free path and mean squared velocity! and seeks its
collision partner among the other particles in a neighborh
of radius r B , choosing it randomly with a probability pro
portional to their relative velocity. Moreover, in this approx
mation the diameters is no more explicitly relevant, but it is
directly related to the choices ofpc and r B in a nontrivial
way. In fact, the Bird algorithm allows the particles to pa
through each other, so that a rigorous diameter canno
defined or simply estimated as a function ofpc and r B . In
this section, to indicate the degree of damping, we give
time tb51/h instead ofh. This is useful to appreciate th
ratio between the mean collision timetc and the mean relax
ation time due to the bath, which indeed istb .

In the present section we choseN15N25500 andTb
51, and equal restitution coefficients for all collisions a
tc50.16. As illustrated in Figs. 3 and 4, the two compone
display different granular temperatures in agreement with
analytical predictions of the homogeneous Boltzmann eq
tions. We checked in our simulations that the ratioT1 /T2
depends more on the mass ratio and much less on the a
metries in the restitution coefficients, i.e.,a11/a22. How-
ever, we do not observe the insensitivity of such a ratio w
respect to inelasticity~e.g., changinga5a11a22 as reported
experimentally@6#!. We shall comment such an issue belo

At a finer level of description we consider the resca
velocity pdf for different values of the inelasticity paramet
and different mass ratiosm2 /m152. One sees that not onl
the deviations from the Gaussian shape become more
more pronounced as we increase the inelasticity param
(12a), but also the shape of the two distributions diff
appreciably in the tails even after velocity rescaling to ma
the two pdf’s to have the same variance. One can also
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serve that the rescaled pdf of the lighter species has slig
broader tails. The mass ratio also controls the deviati
from the Gaussianity of the velocity pdf’s. It is well know
that the departure from the Maxwell-Boltzmann statistics
triggered by the inelasticity of the collisions. The larger t
inelasticity, the stronger is the deviation. The novelty in t
case of mixtures is that the difference in the tails of the t
velocity distributions increases as the inelasticity increas
Moreover, comparing Figs. 5 and 6 one sees that the m
asymmetry enhances the non-Gaussianity of the pdf. S
phenomena were predicted within a Maxwell model in R
@3#.

We have also studied the limits of low and hightb , in
Fig. 7, to show how the velocity distributions change. F
values of the characteristic time of the heat bath,tb , com-
parable with the collision timetc , the dynamics is essen
tially controlled by the stochastic acceleration term. This f
renders the two partial temperatures very close and ma

FIG. 3. Granular temperature ratiosT1 /T2 vs mass ratiom2 /m1

for a binary mixture~DSMC simulation! with different values ofa,
N15N25500, L251000, Tb51, tb510, tc50.16, and case 2

FIG. 4. Granular temperature ratiosT1 /T2 vs restitution coeffi-
cienta for a binary mixture~DSMC simulation! with different val-
ues of m1 /m2 , N15N25500, L251000, Tb51, tb510, tc

50.16, and case 2. The dashed lines represent the temper
ratios predicted by Eq.~15! with case 2.
4-4



ue
ci
we

re
w
n

th
-

the
lso
of

n.
the
el
han

s-
ne

s
th
s

s
s

d
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the velocity distributions nearly Maxwellian. Astb in-
creases, we have observed that the energy dissipation d
the inelasticity makes the temperatures of the two spe
different. Moreover, the temperature ratio displays the po
law decreasing trend as a function oftb , whose strength
depends on the mass ratio~see Fig. 8!.

In order to obtain information about the spatial structu
of the mixture, we have performed an analysis of the follo
ing correlation function that is already introduced in the co
text of granular media by@11,12,17# ~see Fig. 9!

Cah~r !5
1

N~N21! (
iÞ j

Q~r 2uxi
a2xj

hu!. ~16!

For a spatially homogeneous system we expect
Cah(r )'r d2, with d25d being the dimension of the embed
ding space. Whentb,tc , we observe thatd252, as ex-

FIG. 5. Rescaled~to have variance 1) velocity distribution
P(v) vs v in the numerical experiment with the thermal ba
~DSMC simulation!, for binary mixtures of particles with masse
m150.5 and m251, with N15N25500, L251000, Tb51, tb

510, tc50.16, case 2, and different values ofa.

FIG. 6. Rescaled~to have variance 1) velocity distribution
P(v) vs v in the numerical experiment~DSMC simulation! with the
thermal bath, for binary mixtures of particles with massesm1

50.5 and m255, with N15N25500, L251000, Tb51, tb

510, tc50.16, case 2, and different values ofa.
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pected for a homogeneous~i.e., uncorrelated! density. This is
due to the fact that the homogeneous driving dominates
dynamics, and the collisions have small effect on it; it is a
consistent with the restoration of Maxwellian distribution
velocities ~see Fig. 7!. When tb.tc we observe thatd2
,2, which is a signature of fractal density clusterizatio
Moreover, one can also appreciate a small difference in
C(r ) relative to the two species, indicating a different lev
of clusterization, the heavier species is more clusterized t
the lighter one.

IV. SYSTEM WITH GRAVITY

A. Setup

We turn, now, to illustrate the results relative to an inela
tic mixture subject to gravity, and confined to a vertical pla

FIG. 7. Rescaled~to have variance 1! velocity distributions
P(v) vs v in the numerical experiment~DSMC simulation! with the
thermal bath, for binary mixtures of particles with massesm1

50.5 and m255, with N15N25500, L251000, a50.2, Tb

51, different values fortb , tc50.16, and with case 2.

FIG. 8. Temperature ratiosT1 /T2 vs the rescaled viscosity time
tb /tc ~with fixed tc50.16) in the numerical experiment~DSMC
simulation!, with the thermal bath for a binary mixture of particle
with masses m150.5 and m255, with N15N25500, L2

51000, a50.2, Tb51, different mass ratios, with case 2, an
different values ofa.
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of dimensionsLx3Ly . In the horizontal directionx, we as-
sumed periodic boundary conditions. Vertically, the partic
are confined by walls. Energy is supplied by the bottom w
vibrating stochastically or periodically according to th
method employed in Ref.@16# for a one component system

The vibration can have either a periodic character~as in
Ref. @18#! or a stochastic behavior with thermal properti
~as in Ref. @13#!. In the periodic case, the wall oscillate
vertically with the lawYw5Aw sin(vwt), and the particles
collide with it as with a body of infinite mass with restitutio
coefficientaw , so that the vertical component of their velo
ity after the collision isvy852awvy1(11aw)Vw , where
Vw5Awvw cos(vwt) is the velocity of the vibrating wall. In
the stochastic case we assume that the vibration amplitu
negligible, and that the particles colliding with the wall hav
after the collision, new random velocity componentsvx
P(2`,1`) andvyP(0,1`), with the following probabil-
ity distributions:

P~vy!5
vy

Tw
expS 2

vy
2

2Tw
D , ~17!

P~vx!5
1

A2pTw

expS 2
vx

2

2Tw
D . ~18!

In this model we assume that the particles do not feel
external~environmental! friction. In all the simulations, we
have chosenN15N25100, g51, m15m2/251/4, andLx

5Ly5L5AN.
The Boltzmann equations for the partial distribution fun

tions f k(r ,v;t) with k51,2 read

S ]

]t
1v•“ r1gi

]

]v i
D f k~r ,v,t !5(

h
Jkh~ f k , f h!. ~19!

B. Profiles

The results of DSMC simulations show that the tenden
of the grains to form clusters is enhanced by such a choic
driving mechanism with respect to the homogeneous h
bath of the preceding section. In the latter, the noise ac
uniformly was more effective in breaking the clusters.
addition, the gravitational force tends to group the partic
in the lower portion of the container for driving frequenci
not too large@16#.

Figure 10 illustrates the partial density profiles and gra
lar temperature profiles in the presence of a thermal wal
intensityTp520. The density profiles differ slightly near th
bottom wall where both present a maximum~see inset!. The
temperature profiles are different, putting again in evidenc
strong lack of equipartition in the system. Interestingly, t
temperature ratio is almost constant along the vertical di
tion, notwithstanding the partial profiles are nonconstant.
have also performed numerical simulations with a harmo
cally vibrating wall, as the maximum velocity of the vibra
ing wall ~which, for A51, is equal tov) increases, the
position of the density maximum raises, indicating that gr
ity becomes less and less relevant. As far as the partial t
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peratures are concerned, Fig. 11 illustrates the correspon
situation.

One sees that first the temperatures~see inset! next to the
wall attain their largest value, but then drop to increa
again. This indicates that the region far from the bottom
hotter because of the lower density of the gas and of
lower collision rate. As the wall temperature increases,
temperature becomes more homogeneous far from the
tom due to the major homogeneity in density. We also not
a small segregation effect.

The value obtained by our simulation for the temperat
ratio ~having chosenm1 /m250.3 and a single restitution co
efficient a50.93), isT1 /T2'0.75, and is not too far from
the value obtained experimentally by Feitosa and Menon@6#,
which is 0.6660.06. One should recall that in our ‘‘setup

FIG. 9. Correlation function used to compute the correlat
dimensiond2 , C(r ) vs r ~see text for definition!, for a binary
mixture ~DSMC simulation! with m150.5, m255, tc50.16, Tb

51, N15N25500, L251000, a50.2, and with different values
for tb .

FIG. 10. Profiles for probability density per unit lengthn(y)
@i.e., *n(y)dy51] and rescaled granular temperatureT(y)/Tw vs
the rescaled vertical positiony/r b for a binary mixture withm1

50.5, m252, on an inclined plane with a thermal bottom wa
~DSMC simulation! with Tw520, N15N25100, L25200, a
50.6, aw51, g51; the dashed lines indicate the ratios for bo
profiles.
4-6
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only the lower wall supplies energy to the system, wherea
the experiment both walls vibrate.

C. Velocity distributions

Finally, we present the velocity distributions measured
the system with a thermal wall. Since the temperature
pends on the vertical coordinatey we have computed the
velocity pdf’s at different heights. The various pdf’s are plo
ted in Fig. 12 after a suitable rescaling. We observe that
distributions deviate appreciably from a Gaussian shape
display overpopulated high-energy tails.

FIG. 11. Profiles for probability density per unit lengthn(y)
@i.e., *n(y)dy51] vs the rescaled vertical positiony/r b and ratios
between granular temperatures of the two speciesT1(y)/T2(y) vs
y/r b , for a binary mixture~DSMC simulation! with m150.5 and
m252, on an inclined plane with a harmonically oscillating botto
wall with A51, different values ofv, N15N25100, L25200, a
50.9, andaw5ag51.

FIG. 12. Rescaled distributions~to have variance 1) of velocity
P(v) vs v for particles taken in stripes at different heights, for
binary mixture~DSMC simulation! with m150.5, m252, on an
inclined plane with a thermal bottom wall withTw520, N15N2

5100, L25200, a50.6, andg51.
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V. DISCUSSION

The present numerical results not only confirm the pred
tions of different temperatures for the two species for
types of drive, but also show the existence of different sh
functions for the velocity distributions of the two species a
of overpopulated high-energy tails in agreement with
findings based on Maxwell models@3#.

In order to obtain a comparison with experiments, w
employed parameters comparable to those utilized in the
perimental work of Ref.@6# and found only qualitative agree
ment. First, one should expect that due to the assumpt
underlying the Boltzmann equation, the density profiles co
puted numerically are not accurate, and that a better tr
ment of the excluded volume effect is necessary in orde
obtain a more realistic description of the system. In parti
lar, the dense region is not accurately described. These
sity profiles in turn affect the shape of the temperature p
files. Finally, in view of the approximations inherent to th
Boltzmann approach, we have neither tried to include
effect of rotations of the grains nor the friction with the la
eral walls, which might be both relevant@19#.

As far as the physical origin of the lack of kinetic energ
equipartition formula~15! seems to contain the right depe
dence on the various parameters in the homogeneous
but its interpretation is not immediate. Plotting Eq.~15! nu-
merically, one sees that the dependence ofT1 /T2 upon the
composition is rather weak, as shown experimentally a
noted by Barrat and Trizac@20#. Heuristically, we argue tha
the difference betweenT1 andT2 is determined primarily by
the energy source~the vibrating wall! that transmits energie
proportional to the mass of each species. Second, the d
pative forces may or may not tend to restore the energy
uipartition. For instance, if the heavier species is more
elastic, the ratio may be close to unity; and this is due to
presence of two competing effects. On the contrary, if
heavier species is more elastic, the ratio will deviate app
ciably from unity. Due to the simplicity of the present trea
ment, we did not explore the range of inelasticity paramet
necessary to obtain a better fit to the experiments.
reached the conclusion that, in spite of the general qualita
agreement between our model and the experiments, we
no evidence to support completely the conjecture of Feit
and Menon about the insensitivity of the temperature ratio
the inelasticities. Possible explanations are the following

~1! There are other ingredients missing in the theoreti
model employed, such as internal deformations of
spheres, etc.

~2! The effective inelasticity of the glass spheres mig
become less than the one assumed~the suggested restitutio
coefficient of glass is 0.9!.

~3! We have employed a single vibrating wall instead
two walls.

VI. CONCLUSIONS

To summarize, we have studied the steady state prope
of a granular mixture subject to two different classes of e
ternal drive.

In the case of a heat bath acting homogeneously on
4-7
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grains, we have first obtained the temperatures of each
cies by employing an approximate analytic method. We h
then solved numerically the equations by allowing the d
sity and the temperatures to be spatially varying, and a
lyzed the spatial correlations and the velocity distributio
The heavier species showed a higher degree of clusteriza
since it dissipates more energy. Finally, we turned to inv
tigate the properties of the mixture in the presence of gra
and of a vibrating base. The properties of such system w
not very sensitive to the choice of the law according to wh
the wall moves. For this setup we have obtained partial d
sity profiles and partial temperature profiles, and notic
only a small segregation with the lighter particles at the t

The rescaled velocity distribution functions in the pre
ence of gravity appear to be broader than the correspon
d

a-

d
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quantities in the presence of homogeneous heating.
stronger the collisional energy loss with respect to the ene
injection, the more evident the phenomenon.

As a general rule for the temperatures, we observed str
deviation from the equipartition when the heavy particles
also the more elastic, while such a deviation can be sma
the heavy particles are the more elastic.
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