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We study the steady state properties of a two-dimensional granular mixture in the presence of energy driving
by employing simple analytical estimates and direct simulation Monte Carlo. We adopt two different driving
mechanisms(a a homogeneous heat bath with friction aibdl a vibrating boundarythermal or harmonicin
the presence of gravity. The main findings are the appearance of two different granular temperatures, one for
each species; the existence of overpopulated tails in the velocity distribution functions and of nontrivial spatial
correlations indicating the spontaneous formation of cluster aggregates. In the case of a fluid subject to gravity
and to a vibrating boundary, both densities and temperatures display nonuniform profiles along the direction
normal to the wall, in particular, the temperature profiles are different for the two species while the temperature
ratio is almost constant with the height. Finally, we obtained the velocity distributions at different heights and
verified the non-Gaussianity of the resulting distributions.
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[. INTRODUCTION tropically from the bottom vibrating wall of the container.
(3) In both cases we provide information about the pres-
Granular materials present a rich and intriguing phenomence of inhomogeneities in the system, e.g., density cluster-
enology, which has attracted the interest of the scientifidng and nonuniform density and temperature profiles.
Community since the nineteenth Cenu[(_y]_ However, in In Sec. Il we present the model fluid and two different
spite of its recent progress the theoretical study of granulamechanisms of energy supply. In Sec. Ill we discuss the first
gases, i.e., of fluidized granular particles, is certainly lesgubmodel, the one with the heat bath, and obtain by means of
advanced than that concerning ordinary molecular fluids. Th@n approximate analytic method an estimate of the partial
reason for this state of affairs is the presence of dissipatiofemperature of each component. Subsequently we study the
due to inelastic collisions and of friction with the surround- Same submodel with a direct simulation Monte Carlo
ings, which prevents these system to reach thermodynami®SMC) algorithm. In Sec. IV we study numerically the sec-
equilibrium. In fact, in order to render stationary a granularond submode(the one with gravity and vibrating walby
system, one needs to inject energy continuously into the sydneans of the DSM@8,9]. Finally, in Secs. V and VI, we
tem. This can be done, for instance, by shaking or vibratingliscuss the results and present our conclusions.
the grains.
In the present paper we illustrate the results of a numeri-
cal investigation concerning the properties of a two- Il. DEFINITION OF THE MODELS
component granular mixture, modeled, following an estab- e shall consider a dilute inelastic gas constitutedNgf
lished tradition, by inelastic hard spherdtHS) with  paricles of massn, andN, particles of massn, subject to
d!fferent masses, restitution .coeff|C|ents, r_adu, anq squect tQome kind of external drivingthis will be specified in the
different forms of external drive. The physical motivation for fo|i0wing). We suppose that the interactions between the
our study stems from the fact that in nature most granulagains can be described by the smooth IHS mdie], thus
materials are polydisperse from the point of view of theirye specify only the radius of the spheres, their masses and
sizes and/or of their physical and mechanical properties. Thge fraction of the kinetic energy dissipated at each collision.

theoretical study of granular mixtures has attracted so far th¢nis can be done by defining three different restitution coef-

attention of several research¢®s-5|. These studies compre- ficientsa;; , i.e., 11, @z, andas,= apy, which account for

hend both freely cooling and uniformly heated granular mix-,ormal dissipation in collisions among particles of types
tures, and have been_ performed almost conte_mporaneouséy]dj' No internal degrees of freedofe.g., rotations are
with laboratory experiment$6,7]. The most striking out-  ,cjuded.

come is the lack of energy equipartition, i.e., the presence of e can describe the velocity changes induced by the

two different kinetic temperatures, one for each species.  jhstantaneous inelastic collisions of smooth disks labeled 1
The salient features of the present work are the following,; 4 2 of diameters, and o, by the following equations:
(1) A finite-temperature uniform heat bath to drive the

system was utilized. This is achieved by means of a finite

friction between the particles and the surroundings. lta,,, m,
(2) We also considered a situation in which the particles V=V —

subject to a vertical gravitational field receive energy aniso-

[(vi—Vvo)-nIn,  (1a)

2 m, tm,,
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1+ ®yixy mKl A A <§i(t1)§j(t2)>:5(t1_t2)5ij- (4b)
2 mrm, TV ()

Vo=V, +

The associated Fokker-Planck equations for the two cases
. are, respectively,
wheren=2(x;—x;)/(o +0,,) is the unit vector along the
line of centersx; andx, of the colliding disks at contact and _7

. . ) aifi(r,v,t)=—V  (vf(r,v,t
K1,k are the speciegl or 2) to which particles 1 and 2 i ) m; Wi )
belong. An elementary collision conserves the total momen- T
tum and reduces the relative kinetic energy by an amount Ylboo
. . +—Vofi(r,v,t)vV fi(r,v,t

proportional to (1 ailkz)/4. The collision rule we have 2 v (rVOVV (v, - (53

adopted excludes the presence of tangential forces, and

hence the rotational degrees of freedom do not contribute to 7Ty,

the description of the dynamics. afi(r,v,t) =7V, (vfi(r,v,0) + — =V, fi(r,v.t)
Since the particles suffer mutual collisions and loose ki- '

netic energy, in order to achieve a steady state, one needs to +VvV, fi(r,v,t). (5b)

supply some energy from the exterior. The energy source has
been modeled in two different fashions. In the first submodel
we have assumed that the particles experience a uniform sto- _ o _
the velocity-dependent term, in addition to the random forcEds.(5) become two coupled Boltzmann equations modified
ing, not only is motivated by the idea of preventing the en-PY the presence of a diffusion term due to the thermal noise.
ergy of a driven elastic systemx(_, —1), to increase in- In order to derive the temperature of each species in the
definitely, but also mimics the presence of friction of the homageneous stationary state, we shall first neglect the spa-

particles with the container. A fluctuation dissipation relationtIal dependence of the distribution functiofis This can be

is assumed between the viscous force and the intensity of tHggarcjed as a mean field apprOX|.m.at|on to the Boltzmann
noise. Even in extended systems with small inelasticity, th quation. In other words, we let collisions to occur regardless

absence of friction may cause some problems of stabilit heir spat|_al separatlon.AI_though the methqd ofder!vatlon of
[15]. he equations for the partial temperatures is not original, we

In the second submodel the grains are constrained tgresent it. in order to (ender the paper self—contgined and

move on a frictionless inclined plane and the bottom bound- ecause it shows the differences between the particular heat

ary vibrates(as a therma[13] or deterministid 14] oscillat- b‘.'ﬂh \_/ve_em_ployed and those chogen by pther autb@rs

ing wall). Periodic boundary conditions are assumed laterF ISt |n_d|cat|ng byn;=N; /V the partial density of Species

ally. we notice that both Eq45) possess the same equilibrium
Since we consider throughout only sufficiently low den- solution:

sity systems, successive binary collisions are effectively un- o o\dr2 s

correlated and Boltzmann equation can be used to describe fi(v)zni( : ) e M2y, (6)

the nonequilibrium dynamics. 2m Ty

A. Spatially uniform solutions

but their relaxation properties are different. Only upon add-
lll. UNIFORMLY HEATED SYSTEM ing the inelastic collision term, the two species display dif-

In order to see the effect of the heat bath, let us consideflerent temperatures. The resulting Boltzmann equation for a

the system in the absence of collisions. In this case, the ev(g_ranular mixture[2—4] is

lution of the velocity of each particle is described by an &

Ornstein-Uhlenbeck process. If we require that the two com- 4 f (v, ;t)= > Jijlvalfi 1+ ﬂvgfi + iV, (vif)),
ponents must reach the same granular temperature in the ] 2

limit of vanishing inelasticity, we have two different possi- (7)

bilities to fix the heat-bath parameters: )
where we have used a compact notation to represent the two

axi(H)=Vvi(1), (2)  different choices of heat bath:
In case 1,
m;dyVi(t) = — yvi(t) +V2yTpéi(1), (39 29T,
2
0i 2
m;dyv;(t) = —myvi(t) +V2m pTp&i(1), (3b) m;
wherei=1,2; T is the heat bath temperature; afid) is a . ®)
Gaussian noise with the following properties: K
(&(1))=0, (43 in case 2,
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m; R . ml=1’m2=3 7]
R - m1—3, m2=1 i
7i— " €) L T T
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andJ;;[v4|f;,f;] is the collision integral, Eﬁ g .

1 5
vl f1=0% [ ava | 6605907000 095 Pl
-2 ’ ’ oo =T -
X[y 2fi(v) F(vo) = fi(v) fi(v2)].  (10) LT 1

b7 ) X 1 X 1 X 1
. " i . 083 02 04 06 08 1
The primed velocities are precollisional states, which can be o

obtained by inverting Eqd.1). FIG. 1. Homogeneous driving. Granular temperature ratio
Due to the presence of the heat-bath terms, the systerp ) :
. . . “1,/T, vs a, obtained with the heat bath of case 1 usifg=1,
reaches asymptotically a steady state, characterized by time=_ . .
. SR . \ - y=0.1, and different mass ratios.
independent pair distribution functiorgpdf’s). By requiring
stationarity and integrating over, the equation foof;, we

obtain dr(d/2)
mzﬂi(Tb_Ti)
2 égi 2y2 2
> dvlvl‘]ij[vl|fiafj]+? dvio1Vifi g 21-a) g,
! =0 Ni— 35 T
m;
+77ide1U§Vv'(V1fi):0- (11) 41 , (2T 2T,
o il pgi(1-ajj) WWL?]
After simplifying the second and the third integral by inte- T,-T, (2T, 2T,|*2
gration by parts and using the normalization property +4(1+ a5)) T —+— (15
Jfidviy=n;, we find my+mzj\ m;  m;

where u;; =m;/(m;+m;). One obtains the steady values of

dv,02d vyl f f.]1+nded —2 f dv.v2f: (V) =0. the partial temperatures in the spatially homogeneous situa-
; f widivalfi. fil+nidég =27 wifi(v) tion, by solving numerically the nonlinear system of Egs.
(12 (15.

The partial temperature is defined as B. Comparison between the two heat baths

In Figs. 1 and 2, we report on the temperature ratioT,

nTi= HJ dvlmivifi ' (13) as a function of a common restitution coefficient having
: , : , : , : , :
so that Eq(12) can be recast as 161 — m=0.5,m=1|
~~~~~~~ m1=1, m2=3 i
L4l Tl --m=3,m=1 [ |
m (1 2 2\ N T
Prre n_§,: dviidlvdlfi fl+dég ). a9 T ]
bj 1.2 I~ §\\\\\ =
. . . = Ssel
Equation(14) determines the partial temperatures oncefthe Sl
are known. In practice, one can obtain an estimaté&,dfy 1 ~
substituting two Maxwell distributons: T .
08— e _
i a2 o e J
f.(v):n.(_) e Mvi/2T; : . | . | . | . | .
' 27T, 089 02 04 06 0.3 1
o

After performing the remaining integralsee Refs[2,4]),
one gets

FIG. 2. Homogeneous driving of case 2. Granular temperature
ratio T, /T, vs a, with T,=1, %=0.1, and various mass ratios.

051304-3



PAGNANI, MARINI BETTOLO MARCONI, AND PUGLISI PHYSICAL REVIEW E 66, 051304 (2002

chosen equal coefficientsyy;= aso=a1,=a. Assuming T
identical concentrations and varying the mass ratigm,, N ®--00-02
we considered cases 1 and 2. _ ool ‘\:\\‘\ oo N
In the first case, the species with the largest mass is W T
“colder.” In fact, both components receive the same energy | ‘\\h \\\
from the heat bath, but the heavier species dissipates mor NO‘S_ “.\\\ L I
energy due to collisions. 8 T \\\ Y it SN .
We notice that, on the contrary in case 2, the temperature[_' 0.7 \\ Y 7]
ratio is, on the contrary, an increasing function of the mass I ‘\\ e
ratio m; /m,. The experimental observatigf] suggest that 0.6 ‘\. ~~~~~~ . 7]
the trend of case 2 is physically more relevant. In case 2, e -
both the friction term and the power supplied are propor- 0.5f By S -
tional to the mass of the two species. In the following DSMC S W N SR SR RN R DR N B
simulations we shall use case 2. 12 3 4 5 6 7 8 9 10
m,/m,
C. DSMC of homogeneously driven systems FIG. 3. Granular temperature ratidg/T, vs mass ration, /m;

In the present section we illustrate the results obtained®r @ binary mixturdDSMC simulation with different values of,
simulating the system with the heat batith recipe 2, i.e., N1=N2=500,L7=1000,T,=1, 7,=10, 7.=0.16, and case 2
Eqg. (3b)] by the so-called direct simulation Monte Carlo, ) _ .
according to the implementation described in Ha#]. In  Serve that the rescaled pdf of the lighter species has slightly
this way we do not constrain the system to be spatially hobroader tails. The mass ratio also controls the deviations
mogeneous since DSMC allows for fluctuations of the rel-Tom the Gaussianity of the velocity pdf's. It is well known
evant fields. that the departure from the Maxwell-Boltzmann statistics is

At every time step of lengtiAt, each particle is selected triggered by the inelasticity of the collisions. The larger the
to collide with a probabilityp,=At/7. (where 7. is ana inelasticity, the stronger is the deviation. The novelty in the
priori fixed mean free time established consistently with thec@S€ of mixtures is that the difference in the tails of the two
mean free path and mean squared velgcitgd seeks its velocity distributions increases as the inelasticity increases.
collision partner among the other particles in a neighborhood/oreover, comparing Figs. 5 and 6 one sees that the mass
of radiusrg, choosing it randomly with a probability pro- @Symmetry enhances the non-Gaussianity of the pdf. Such
portional to their relative velocity. Moreover, in this approxi- Phenomena were predicted within a Maxwell model in Ref.
mation the diametes is no more explicitly relevant, but it is ] o ] )
directly related to the choices @, andrg in a nontrivial e have also studied the limits of low and high, in
way. In fact, the Bird algorithm allows the particles to passFi9- 7, to show how the velocity distributions change. For
through each other, so that a rigorous diameter cannot bgalues of the characteristic time of the heat bath, com-

defined or simply estimated as a functionmfandrg. In ~ Parable with the collision timer, the dynamics is essen-
this section, to indicate the degree of damping, we give thdially controlled by the stochastic acceleration term. This fact
time 7,=1/7 instead of. This is useful to appreciate the renders the two partial temperatures very close and makes

ratio between the mean collision timrg and the mean relax-

ation time due to the bath, which indeedss. Y ' ' ' ' ' I __',-—;f
In the present section we chod&=N,=500 andTy oo T e -
=1, and equal restitution coefficients for all collisions and  ggl. ~ _____-----"" Y T e PR
7.=0.16. As illustrated in Figs. 3 and 4, the two components """~ M T e
display different granular temperatures in agreement with the e ]
analytical predictions of the homogeneous Boltzmann equa- N0-6_- _________________ . 7
tions. We checked in our simulations that the rafip/T, [10.5.—' """" . ] i
depends more on the mass ratio and much less on the asy 04l h
metries in the restitution coefficients, i.evy;/a,,. How- Tt e m=05my>=1
ever, we do not observe the insensitivity of such a ratio with 03[ m m=05m=5 .
respect to inelasticitye.g., changingr= a,,a,, as reported 02 ---- m;=0.5, m,=1 theory -
experimentally{6]). We shall comment such an issue below. 4,0 |- m,=0.5, m,=5 theory ]
At a finer level of description we consider the rescaled . | ‘ | . | . | ‘
velocity pdf for different values of the inelasticity parameter % 0.2 0.4 o 0.6 0.8 1

and different mass ratia®, /m;=2. One sees that not only
the deviations from the Gaussian shape become more and FiG. 4. Granular temperature ratids /T, vs restitution coeffi-
more pronounced as we increase the inelasticity paramet@fent« for a binary mixturel DSMC simulation with different val-
(1—a), but also the shape of the two distributions differ yes of m,/m,, N;,=N,=500, L?=1000, T,=1, 7,=10, .
appreciably in the tails even after velocity rescaling to make=0.16, and case 2. The dashed lines represent the temperature
the two pdf's to have the same variance. One can also ohatios predicted by E¢15) with case 2.
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wWer——7—"—"7—""""7""—7 0=0.2, mylm,=10
E O 0=0.2, Part. 1 1
F — ® 0=02, Part.2 ' ' ' , =00 m=0.5+
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g ~~ Gaussian 0.1 1000 me0.5%
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6 4 2 0 2 4 6 -
v/v0 8

vivy
FIG. 5. Rescaledto have variance 1) velocity distributions ] S
P(v) vs v in the numerical experiment with the thermal bath ~ FIG. 7. Rescaledto have variance )lvelocity distributions

(DSMC simulation, for binary mixtures of particles with masses P(v) vsv in the numerical experimeDSMC simulation with the
m;=0.5 andm,=1, with N;=N,=500, L2=1000, T,=1, 7, thermal bath, for binary mixtures of particles with massas

=10, 7.=0.16, case 2, and different values @f =0.5 and m,=5, with N;=N,=500, L?=1000, «=0.2, T},
=1, different values forr,, 7.=0.16, and with case 2.

the velocity distributions nearly Maxwellian. Asy in-
creases, we have observed that the energy dissipation due
the inelasticity makes the temperatures of the two specie
different. Moreover, the temperature ratio displays the powe
law decreasing trend as a function @f, whose strength
depends on the mass ratisee Fig. 8

In order to obtain information about the spatial structure
of the mixture, we have performed an analysis of the follow-
ing correlation function that is already introduced in the con-
text of granular media b§11,12,17 (see Fig. 9

Scted for a homogeneodse., uncorrelateddensity. This is

Ue to the fact that the homogeneous driving dominates the
ynamics, and the collisions have small effect on it; it is also
consistent with the restoration of Maxwellian distribution of
velocities (see Fig. 7. When r,> 7. we observe thad,

<2, which is a signature of fractal density clusterization.
Moreover, one can also appreciate a small difference in the
C(r) relative to the two species, indicating a different level
of clusterization, the heavier species is more clusterized than
the lighter one.

Ca,](r)—N(Nl_l) g,] O(r— |Xia_xj77|)' (16 IV. SYSTEM WITH GRAVITY
A. Setup
For a spatially homogeneous system we expect that
Cm](r)wrd% with d,=d being the dimension of the embed-
ding space. Wherr,<r7., we observe that,=2, as ex-

We turn, now, to illustrate the results relative to an inelas-
tic mixture subject to gravity, and confined to a vertical plane

0

. 10 SRR — T —
10 E ' ' . " [0 0=02,Par 1 | o o m=05m=2| |
r — ® 0=0.2, Part. 2 S Sl o m=0.5,m,=5
® 6209, par 1 - @ e _
107 m 0=0.9, Part.2 I ol o ]
r -~ Gaussian \\ RN X-O,Ol
2L . « B RN \'O~\\ 1
z i < S I Sl
& U f o % ] i a
> 103k O/ O E o~
10°E E S
0 E © ? o 3 a_
o ® ] L So i
104‘ OO oE:: h_.oo ] 016 Sn_
E [ ] 3 o
E o] ‘. le) = o
E O ol \me 0 &
i o / \® O 1 TN BT BT BT
107 3 ! , , , \n 0 0.1 10 100 1000
-5 0 5 T,

FIG. 8. Temperature ratioE, /T, vs the rescaled viscosity time
FIG. 6. Rescaledto have variance 1) velocity distributions 7,/7; (with fixed 7.=0.16) in the numerical experime(®SMC
P(v) vsv in the numerical experimeDSMC simulation with the simulation, with the thermal bath for a binary mixture of particles
thermal bath, for binary mixtures of particles with masses  with masses m;=0.5 and m,=5, with N;=N,=500, L2
=0.5 and m,=5, with N;=N,=500, L2=1000, Tp=1, 7 =1000, «=0.2, T,=1, different mass ratios, with case 2, and
=10, 7.=0.16, case 2, and different values @f different values ofa.
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of dimensions., XL, . In the horizontal directiorx, we as- e 0 T
sumed periodic boundary conditions. Vertically, the particles '
are confined by walls. Energy is supplied by the bottom wall
vibrating stochastically or periodically according to the g A
method employed in Ref16] for a one component system. g 3
The vibration can have either a periodic characge in
Ref. [18]) or a stochastic behavior with thermal properties

(1)

(as in Ref.[13]). In the periodic case, the wall oscillates 10_2: o T,=0.L,m,
vertically with the lawY,=A,, sin(w,t), and the particles o T,=0.1,m,
collide with it as with a body of infinite mass with restitution o T,=10,m,
coefficienta,,, so that the vertical component of their veloc- | o T,=10,m,
ity after the collision isvy=—ayv,+(1+ay,)V,, Where o T,=1000, m,
V,,=A,,0,, CosSw,t) is the velocity of the vibrating wall. In L =& 7,=1000,m,
the stochastic case we assume that the vibration amplitude i 10 oL 10
negligible, and that the particles colliding with the wall have,
after the collision, new random velocity components FIG. 9. Correlation function used to compute the correlation
e(—o,+x) andvye(0,+oc), with the following probabil- dimensiond,, C(r) vsr (see text for definition for a binary
ity distributions: mixture (DSMC simulation with m;=0.5, m,=5, 7.=0.16, T,
=1, N;=N,=500, L2=1000, «=0.2, and with different values
vy 05 for 7, .
P(vy)=_|_—ex _F ) (17)
w w peratures are concerned, Fig. 11 illustrates the corresponding
5 situation.
P(v,)= 1 exp( o Ux ) (18) One sees that first the temperatu(ese insetnext tp the
X 27T, 2T, wall attain their largest value, but then drop to increase

again. This indicates that the region far from the bottom is

In this model we assume that the particles do not feel anjrotter because of the lower density of the gas and of the
external(environmental friction. In all the simulations, we lower collision rate. As the wall temperature increases, the
have chosemN;=N,=100, g=1, m;=m,/2=1/4, andL, temperature becomes more homogeneous far from the bot-

=L,=L= JN. tom due to the major homogeneity in density. We also notice
The Boltzmann equations for the partial distribution func-a small segregation effect.
tions f (r,v;t) with k=1,2 read The value obtained by our simulation for the temperature

ratio (having chosem; /m,=0.3 and a single restitution co-
d d efficient «=0.93), isT,/T,~0.75, and is not too far from
StV Vet 9 fo(r,v,t)= 21]: Jen(fierty). (19 the value obtained experimentally by Feitosa and Mei&n

which is 0.66-0.06. One should recall that in our “setup”

B. Profiles 5 - I . |

. . COm=0.5| _ e ——————,—
The results of DSMC simulations show that the tendency a—a?ﬁ:z """ —T

of the grains to form clusters is enhanced by such a choice o
driving mechanism with respect to the homogeneous hea® 0.1k
bath of the preceding section. In the latter, the noise acting :
uniformly was more effective in breaking the clusters. In
addition, the gravitational force tends to group the particles
in the lower portion of the container for driving frequencies
not too large[ 16]. 4
Figure 10 illustrates the partial density profiles and granu-F,
lar temperature profiles in the presence of a thermal wall ofh_f
intensity T,=20. The density profiles differ slightly near the = 0-1:\
bottom wall where both present a maximuysee inset The ) , , ]
temperature profiles are different, putting again in evidence & 0 5 10 15
strong lack of equipartition in the system. Interestingly, the yhrb
temperature ratio is almost constant along the vertical direc- £ 10, profiles for probability density per unit lengtity)
tion, notwithstanding the partial profiles are nonconstant. Wg; e | n(y)dy=1] and rescaled granular temperatdgy)/T,, vs
have also performed numerical simulations with a harmonithe rescaled vertical positiow'r,, for a binary mixture withm;
CaIIy Vibrating wall, as the maximum VelOCity of the vibrat- =0.5, m,=2, on an inclined plane with a thermal bottom wall
ing wall (which, for A=1, is equal tow) increases, the (DSMC simulation with T, =20, N;=N,=100, L2=200, «
position of the density maximum raises, indicating that grav-=0.6, «,,=1, g=1; the dashed lines indicate the ratios for both
ity becomes less and less relevant. As far as the partial tenprofiles.
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-0 =10, m=0.5 V. DISCUSSION

T T T o0 =10, m=2 . . .
&8 ©=20, m=0.5 The present numerical results not only confirm the predic-
=8 =20, m=2 tions of different temperatures for the two species for all
o gfgg’ m=051 types of drive, but also show the existence of different shape

functions for the velocity distributions of the two species and
§ 1 Sdadd i rnhan SR of overpopulated high-energy tails in agreement with the
186 findings based on Maxwell mod€]8].
In order to obtain a comparison with experiments, we
| employed parameters comparable to those utilized in the ex-
] perimental work of Ref[6] and found only qualitative agree-

| : y _

PP o
I o $0000070eP000gPToTOee Yy
0.8[R %0 0

& jal
A &gEE.BEBE S8~ taeafpagaea  n eated o

£ 0 - ment. First, one should expect that due to the assumptions
[ e 2 Po R e 08 ] underlying the Boltzmann equation, the density profiles com-
0.6 (12N ofq /A / PR & SN - ying ‘ q ) yp
- %000y g g 900 1 puted numerically are not accurate, and that a better treat-
0'50‘ : g : 1'0 : ;5 ment of the excluded volume effect is necessary in order to

yit, obtain a more realistic description of the system. In particu-
lar, the dense region is not accurately described. These den-
FIG. 11. Profiles for probability density per unit lengty) sity profiles in turn affect the shape of the temperature pro-
[i.e., [n(y)dy=1] vs the rescaled vertical positiofir, and ratios ~ files. Finally, in view of the approximations inherent to the
between granular temperatures of the two speTigy)/T,(y) vs Boltzmann approach, we have neither tried to include the
y/ry, for a binary mixture(DSMC simulation with m;=0.5 and  effect of rotations of the grains nor the friction with the lat-
m,=2, on an inclined plane with a harmonically oscillating bottom eral walls, which might be both relevafit9].
wall with A=1, different values ofv, N;=N,=100, L?=200, « As far as the physical origin of the lack of kinetic energy,
=0.9, anda,, = ag=1. equipartition formula(15) seems to contain the right depen-
dence on the various parameters in the homogeneous case,

only the lower wall supplies energy to the system, whereas iRUt its interpretation is not immediate. Plotting E#5) nu-
the experiment both walls vibrate. merically, one sees that the dependencd ofT, upon the
composition is rather weak, as shown experimentally and

noted by Barrat and Trizg@0]. Heuristically, we argue that
C. Velocity distributions the difference betweefi; andT, is determined primarily by
the energy sourcéhe vibrating wall that transmits energies
Finally, we present the velocity distributions measured inproportional to the mass of each species. Second, the dissi-
the SyStem with a thermal wall. Since the temperature depative forces may or may not tend to restore the energy eg-
pends on the vertical coordinajewe have computed the yipartition. For instance, if the heavier species is more in-
velocity pdf’s at different heights. The various pdf’s are plot- g|astic, the ratio may be close to unity; and this is due to the
ted in Fig. 12 after a suitable rescaling. We observe that th@resence of two competing effects. On the contrary, if the
distributions deviate appreciably from a Gaussian shape angeavier species is more elastic, the ratio will deviate appre-

display overpopulated high-energy tails. ciably from unity. Due to the simplicity of the present treat-
ment, we did not explore the range of inelasticity parameters
a : T T .“ . T T — necessary to obtain a better fit to the experiments. We
C 4 5 Pat 160070 reached the conclusion that, in spite of the general qualitative
10k ﬁ B ® Par.2(y=0.070)( agreement between our model and the experiments, we have
3 a ¢ D hm2ommn|]  no evidence to support completely the conjecture of Feitosa
ol f %3 2 gz;gjgzg 1 and Menon about the insensitivity of the temperature ratio on
_ 107¢ @ -- Gauwsimn | ] the inelasticities. Possible explanations are the following:
= f f =] ] (1) There are other ingredients missing in the theoretical
";: 10.3;_ gg:' ‘.l %b _ model employed, such as internal deformations of the
E e ! ! E spheres, etc.
i ® % : ‘3@ ] (2) The effective inelasticity of the glass spheres might
10“‘; 8 ! ! «e o E become less than the one assunibe suggested restitution
F o g O ce ': ': oo, ] coefficient of glass is 0)9
—S:q o ) ' "&e (3) We have employed a single vibrating wall instead of
O 1o "3 wowals.
vx/v0

VI. CONCLUSIONS
FIG. 12. Rescaled distributiorito have variance 1) of velocity

P(v) vs v for particles taken in stripes at different heights, for a  T0O summarize, we have studied the steady state properties
binary mixture(DSMC simulation with m;=0.5, m,=2, on an  Of a granular mixture subject to two different classes of ex-
inclined plane with a thermal bottom wall with,, =20, N;=N,  ternal drive.

=100, L?=200, «=0.6, andg=1. In the case of a heat bath acting homogeneously on the
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grains, we have first obtained the temperatures of each spguantities in the presence of homogeneous heating. The

cies by employing an approximate analytic method. We havatronger the collisional energy loss with respect to the energy

then solved numerically the equations by allowing the deninjection, the more evident the phenomenon.

sity and the temperatures to be spatially varying, and ana- As a general rule for the temperatures, we observed strong

lyzed the spatial correlations and the velocity distributions deviation from the equipartition when the heavy particles are

The heavier species showed a higher degree of clusterizatigflso the more elastic, while such a deviation can be small if

since it dissipates more energy. Finally, we turned to investhe heavy particles are the more elastic.

tigate the properties of the mixture in the presence of gravity

and of a vibrating base. The properties of such system were

not very sensitive to the choice of the law according to which ACKNOWLEGMENTS
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